<< Chapter < Page Chapter >> Page >

Conceptual questions

Explain why the fission of heavy nuclei releases energy. Similarly, why is it that energy input is required to fission light nuclei?

Got questions? Get instant answers now!

Explain, in terms of conservation of momentum and energy, why collisions of neutrons with protons will thermalize neutrons better than collisions with oxygen.

Got questions? Get instant answers now!

The ruins of the Chernobyl reactor are enclosed in a huge concrete structure built around it after the accident. Some rain penetrates the building in winter, and radioactivity from the building increases. What does this imply is happening inside?

Got questions? Get instant answers now!

Since the uranium or plutonium nucleus fissions into several fission fragments whose mass distribution covers a wide range of pieces, would you expect more residual radioactivity from fission than fusion? Explain.

Got questions? Get instant answers now!

The core of a nuclear reactor generates a large amount of thermal energy from the decay of fission products, even when the power-producing fission chain reaction is turned off. Would this residual heat be greatest after the reactor has run for a long time or short time? What if the reactor has been shut down for months?

Got questions? Get instant answers now!

How can a nuclear reactor contain many critical masses and not go supercritical? What methods are used to control the fission in the reactor?

Got questions? Get instant answers now!

Why can heavy nuclei with odd numbers of neutrons be induced to fission with thermal neutrons, whereas those with even numbers of neutrons require more energy input to induce fission?

Got questions? Get instant answers now!

Why is a conventional fission nuclear reactor not able to explode as a bomb?

Got questions? Get instant answers now!

Problem exercises

(a) Calculate the energy released in the neutron-induced fission (similar to the spontaneous fission in [link] )

n + 238 U 96 Sr + 140 Xe + 3 n,

given m ( 96 Sr ) = 95.921750 u and m ( 140 Xe ) = 139.92164 . (b) This result is about 6 MeV greater than the result for spontaneous fission. Why? (c) Confirm that the total number of nucleons and total charge are conserved in this reaction.

(a) 177.1 MeV

(b) Because the gain of an external neutron yields about 6 MeV, which is the average BE/ A for heavy nuclei.

(c) A = 1 + 238 = 96 + 140 + 1 + 1 + 1, Z = 92 = 38 + 53 , efn = 0 = 0 size 12{A=1+"238"="96"+"140"+1+1+1,`Z="92"="38"+"53",`"efn"=0=0} {}

Got questions? Get instant answers now!

(a) Calculate the energy released in the neutron-induced fission reaction

n + 235 U 92 Kr + 142 Ba + 2 n,

given m ( 92 Kr ) = 91 . 926269 u and m ( 142 Ba ) = 141 . 916361 u .

(b) Confirm that the total number of nucleons and total charge are conserved in this reaction.

Got questions? Get instant answers now!

(a) Calculate the energy released in the neutron-induced fission reaction

n + 239 Pu 96 Sr + 140 Ba + 4 n ,

given m ( 96 Sr ) = 95 . 921750 u and m ( 140 Ba ) = 139 . 910581 u size 12{m \( "" lSup { size 8{"140"} } "Ba" \) ="139" "." "910581"`u} {} .

(b) Confirm that the total number of nucleons and total charge are conserved in this reaction.

(a) 180.6 MeV

(b) A = 1 + 239 = 96 + 140 + 1 + 1 + 1 + 1, Z = 94 = 38 + 56 , efn = 0 = 0 size 12{A=1+"239"="96"+"140"+1+1+1+1,`Z="94"="38"+"56",`"efn"=0=0} {}

Got questions? Get instant answers now!

Confirm that each of the reactions listed for plutonium breeding just following [link] conserves the total number of nucleons, the total charge, and electron family number.

Got questions? Get instant answers now!

Breeding plutonium produces energy even before any plutonium is fissioned. (The primary purpose of the four nuclear reactors at Chernobyl was breeding plutonium for weapons. Electrical power was a by-product used by the civilian population.) Calculate the energy produced in each of the reactions listed for plutonium breeding just following [link] . The pertinent masses are m ( 239 U ) = 239.054289 u , m ( 239 Np ) = 239.052932 u , and m ( 239 Pu ) = 239.052157 u .

238 U + n 239 U + γ 4.81 MeV

239 U 239 Np + β + v e 0.753 MeV

239 Np 239 Pu + β + v e size 12{"" lSup { size 8{"239"} } "Np" rightarrow "" lSup { size 8{"239"} } "Pu"+β rSup { size 8{ - {}} } +v rSub { size 8{e} } } {} 0.211 MeV

Got questions? Get instant answers now!

The naturally occurring radioactive isotope 232 Th size 12{"" lSup { size 8{"232"} } "Th"} {} does not make good fission fuel, because it has an even number of neutrons; however, it can be bred into a suitable fuel (much as 238 U size 12{"" lSup { size 8{"238"} } U} {} is bred into 239 P size 12{"" lSup { size 8{"239"} } P} {} ).

(a) What are Z size 12{Z} {} and N size 12{N} {} for 232 Th size 12{"" lSup { size 8{"232"} } "Th"} {} ?

(b) Write the reaction equation for neutron captured by 232 Th and identify the nuclide A X produced in n + 232 Th A X + γ .

(c) The product nucleus β size 12{β rSup { size 8{ - {}} } } {} decays, as does its daughter. Write the decay equations for each, and identify the final nucleus.

(d) Confirm that the final nucleus has an odd number of neutrons, making it a better fission fuel.

(e) Look up the half-life of the final nucleus to see if it lives long enough to be a useful fuel.

Got questions? Get instant answers now!

The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical.

(a) What is the thermal nuclear power output in megawatts?

(b) How many 235 U size 12{"" lSup { size 8{"235"} } U} {} nuclei fission each second, assuming the average fission produces 200 MeV?

(c) What mass of 235 U size 12{"" lSup { size 8{"235"} } U} {} is fissioned in one year of full-power operation?

(a) 2 . 57 × 10 3 MW size 12{2 "." "57" times "10" rSup { size 8{3} } `"MW"} {}

(b) 8.03 × 10 19 fission/s size 12{8 "." "04" times "10" rSup { size 8{"19"} } `"fission/s"} {}

(c) 991 kg

Got questions? Get instant answers now!

A large power reactor that has been in operation for some months is turned off, but residual activity in the core still produces 150 MW of power. If the average energy per decay of the fission products is 1.00 MeV, what is the core activity in curies?

Got questions? Get instant answers now!
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask