<< Chapter < Page Chapter >> Page >

Problem-solving strategy

  1. Identify which physical principles are involved.
  2. Solve the problem using strategies outlined in the text.

[link] illustrates how these strategies are applied to an integrated-concept problem.

Recoil of a dust particle after absorbing a photon

The following topics are involved in this integrated concepts worked example:

Topics
Photons (quantum mechanics)
Linear Momentum

A 550-nm photon (visible light) is absorbed by a 1 . 00-μg size 12{1 "." "00-μg"} {} particle of dust in outer space. (a) Find the momentum of such a photon. (b) What is the recoil velocity of the particle of dust, assuming it is initially at rest?

Strategy Step 1

To solve an integrated-concept problem , such as those following this example, we must first identify the physical principles involved and identify the chapters in which they are found. Part (a) of this example asks for the momentum of a photon , a topic of the present chapter. Part (b) considers recoil following a collision , a topic of Linear Momentum and Collisions .

Strategy Step 2

The following solutions to each part of the example illustrate how specific problem-solving strategies are applied. These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so on.

Solution for (a)

The momentum of a photon is related to its wavelength by the equation:

p = h λ . size 12{p= { {h} over {λ} } } {}

Entering the known value for Planck’s constant h size 12{h} {} and given the wavelength λ size 12{λ} {} , we obtain

p = 6.63 × 10 34 J s 550 × 10 –9 m = 1 . 21 × 10 27 kg m/s . alignl { stack { size 12{p= { {6 "." "63"´"10" rSup { size 8{-"34"} } " J" cdot s} over {5 "." "50"´"10" rSup { size 8{ +- 9} } " m"} } } {} #=1 "." "21"´"10" rSup { size 8{-"27"} } " kg" cdot "m/s" "." {} } } {}

Discussion for (a)

This momentum is small, as expected from discussions in the text and the fact that photons of visible light carry small amounts of energy and momentum compared with those carried by macroscopic objects.

Solution for (b)

Conservation of momentum in the absorption of this photon by a grain of dust can be analyzed using the equation:

p 1 + p 2 = p 1 + p 2 ( F net = 0 ) . size 12{p rSub { size 8{1} } +p rSub { size 8{2} } =p rSub { size 8{1} } '+p rSub { size 8{2} } '" " \( F rSub { size 8{"net"} } =0 \) } {}

The net external force is zero, since the dust is in outer space. Let 1 represent the photon and 2 the dust particle. Before the collision, the dust is at rest (relative to some observer); after the collision, there is no photon (it is absorbed). So conservation of momentum can be written

p 1 = p 2 = mv , size 12{p rSub { size 8{1} } =p rSub { size 8{2} } ' = ital "mv"} {}

where p 1 size 12{p rSub { size 8{1} } } {} is the photon momentum before the collision and p 2 size 12{p rSub { size 8{2} } ' } {} is the dust momentum after the collision. The mass and recoil velocity of the dust are m size 12{m} {} and v size 12{v} {} , respectively. Solving this for v size 12{v} {} , the requested quantity, yields

v = p m , size 12{v= { {p} over {m} } } {}

where p size 12{p} {} is the photon momentum found in part (a). Entering known values (noting that a microgram is 10 9 kg size 12{"10" rSup { size 8{ - 9} } " kg"} {} ) gives

v = 1 . 21 × 10 27 kg m/s 1 . 00 × 10 9 kg = 1 . 21 × 10 –18 m/s. alignl { stack { size 12{v= { {1 "." "21"´"10" rSup { size 8{-"27"} } " kg" cdot "m/s"} over {1 "." "00"´"10" rSup { size 8{ +- 9} } " kg"} } } {} #=1 "." "21"´"10" rSup { size 8{-"18"} } " m/s" "." {} } } {}

Discussion

The recoil velocity of the particle of dust is extremely small. As we have noted, however, there are immense numbers of photons in sunlight and other macroscopic sources. In time, collisions and absorption of many photons could cause a significant recoil of the dust, as observed in comet tails.

Section summary

  • The particle-wave duality refers to the fact that all particles—those with mass and those without mass—have wave characteristics.
  • This is a further connection between mass and energy.

Conceptual questions

In what ways are matter and energy related that were not known before the development of relativity and quantum mechanics?

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask