<< Chapter < Page Chapter >> Page >

Solution for (a)

Constructive interference occurs here when

2 t c = λ n 2 , n 2 , n 2 , . size 12{2t rSub { size 8{c} } = { {λ rSub { size 8{n} } } over {2} } ,` { {3λ rSub { size 8{n} } } over {2} } ,` { {5λ rSub { size 8{n} } } over {2} } ", "` dotslow } {}

The smallest constructive thickness t c size 12{t rSub { size 8{c} } } {} thus is

t c = λ n 4 = λ / n 4 = ( 650 nm ) / 1 . 333 4 = 122 nm. alignl { stack { size 12{t rSub { size 8{c} } = { {λ rSub { size 8{n} } } over {4} } = { {λ/n} over {4} } = { { { \( "650"`"nm" \) } slash {1 "." "333"} } over {4} } } {} #="122"`"nm" {} } } {}

The next thickness that gives constructive interference is t c = n / 4 , so that

t c = 366 nm. size 12{ { {t}} sup { ' } rSub { size 8{c} } ="366"`"nm"} {}

Finally, the third thickness producing constructive interference is t ′′ c n / 4 size 12{ { {t}} sup { '' } rSub { size 8{c} }<= 5λ rSub { size 8{n} } /4} {} , so that

t ′′ c = 610 nm. size 12{ { {t}} sup { '' } rSub { size 8{c} } ="610"`"nm"} {}

Solution for (b)

For destructive interference , the path length difference here is an integral multiple of the wavelength. The first occurs for zero thickness, since there is a phase change at the top surface. That is,

t d = 0. size 12{t rSub { size 8{d} } =0} {}

The first non-zero thickness producing destructive interference is

2 t d = λ n . size 12{2 { {t}} sup { ' } rSub { size 8{d} } =λ rSub { size 8{n} } } {}

Substituting known values gives

t d = λ n 2 = λ / n 2 = ( 650 nm ) / 1 . 333 2 = 244 nm. alignl { stack { size 12{ { {t}} sup { ' } rSub { size 8{d} } = { {λ"" lSub { size 8{n} } } over {2} } = { {λ/n} over {2} } = { { { \( "650"`"nm" \) } slash {1 "." "333"} } over {2} } } {} #="244"`"nm" {} } } {}

Finally, the third destructive thickness is 2 t ′′ d = n size 12{2 { {t}} sup { '' } rSub { size 8{d} } =2λ rSub { size 8{n} } } {} , so that

t ′′ d = λ n = λ n = 650 nm 1 . 333 = 488 nm. alignl { stack { size 12{ { {t}} sup { '' } rSub { size 8{d} } =λ rSub { size 8{n} } = { {λ} over {n} } = { {"650"`"nm"} over {1 "." "333"} } } {} #="488"`"nm" {} } } {}

Discussion

If the bubble was illuminated with pure red light, we would see bright and dark bands at very uniform increases in thickness. First would be a dark band at 0 thickness, then bright at 122 nm thickness, then dark at 244 nm, bright at 366 nm, dark at 488 nm, and bright at 610 nm. If the bubble varied smoothly in thickness, like a smooth wedge, then the bands would be evenly spaced.

Another example of thin film interference can be seen when microscope slides are separated (see [link] ). The slides are very flat, so that the wedge of air between them increases in thickness very uniformly. A phase change occurs at the second surface but not the first, and so there is a dark band where the slides touch. The rainbow colors of constructive interference repeat, going from violet to red again and again as the distance between the slides increases. As the layer of air increases, the bands become more difficult to see, because slight changes in incident angle have greater effects on path length differences. If pure-wavelength light instead of white light is used, then bright and dark bands are obtained rather than repeating rainbow colors.

Figure A shows two microscope slides that have been pressed together. Multicolor swirling rainbow bands are visible coming from the slides. Figure B shows a cross section of two glass slides stacked one on top of the other. The lower slide is horizontal and the upper slide is tilted up at an angle that is larger than the actual angle between slides would be. Two rays come from above and impinge upon the slides. Their refraction and partial reflection is shown at each glass air interface.
(a) The rainbow color bands are produced by thin film interference in the air between the two glass slides. (b) Schematic of the paths taken by rays in the wedge of air between the slides.

An important application of thin film interference is found in the manufacturing of optical instruments. A lens or mirror can be compared with a master as it is being ground, allowing it to be shaped to an accuracy of less than a wavelength over its entire surface. [link] illustrates the phenomenon called Newton’s rings, which occurs when the plane surfaces of two lenses are placed together. (The circular bands are called Newton’s rings because Isaac Newton described them and their use in detail. Newton did not discover them; Robert Hooke did, and Newton did not believe they were due to the wave character of light.) Each successive ring of a given color indicates an increase of only one wavelength in the distance between the lens and the blank, so that great precision can be obtained. Once the lens is perfect, there will be no rings.

This figure shows rainbow-colored concentric rings obtained when two plano-convex lenses are placed together with their flat surfaces in contact.
“Newton's rings” interference fringes are produced when two plano-convex lenses are placed together with their plane surfaces in contact. The rings are created by interference between the light reflected off the two surfaces as a result of a slight gap between them, indicating that these surfaces are not precisely plane but are slightly convex. (credit: Ulf Seifert, Wikimedia Commons)

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask