<< Chapter < Page Chapter >> Page >
emf = 2 Bℓ w 2 ω sin ωt = ( w ) sin ωt . size 12{"emf"=2Bℓ { {w} over {2} } ω"sin"ωt= \( ℓw \) Bω"sin"ωt} {}

Noting that the area of the loop is A = w size 12{A=ℓw} {} , and allowing for N size 12{N} {} loops, we find that

emf = NAB ω sin ωt size 12{"emf"= ital "NAB"ω"sin"ωt} {}

is the emf induced in a generator coil    of N size 12{N} {} turns and area A size 12{A} {} rotating at a constant angular velocity ω in a uniform magnetic field B size 12{B} {} . This can also be expressed as

emf = emf 0 sin ωt , size 12{"emf"="emf" rSub { size 8{0} } "sin"ωt} {}

where

emf 0 = NAB ω size 12{"emf" rSub { size 8{0} } = ital "NAB"ω} {}

is the maximum (peak) emf . Note that the frequency of the oscillation is f = ω / size 12{f=ω/2π} {} , and the period is T = 1 / f = / ω size 12{T=1/f=2π/ω} {} . [link] shows a graph of emf as a function of time, and it now seems reasonable that AC voltage is sinusoidal.

The first part of the figure shows a schematic diagram of a single coil electric generator. It consists of a rotating rectangular loop placed between the two poles of a permanent magnet shown as two rectangular blocks curved on side facing the loop. The magnetic field B is shown pointing from the North to the South Pole. The two ends of this loop are connected to the two small rings. The two conducting carbon brushes are kept pressed separately on both the rings. The loop is rotated in the field with an angular velocity omega. Outer ends of the two brushes are connected to an electric bulb which is shown to glow brightly. The second part of the figure shows the graph for e m f generated E as a function of time t. The e m f is along the Y axis and the time t is along the X axis. The graph is a progressive sine wave with a time period T. The crest maxima are at E zero and trough minima are at negative E zero.
The emf of a generator is sent to a light bulb with the system of rings and brushes shown. The graph gives the emf of the generator as a function of time. emf 0 size 12{"emf" rSub { size 8{0} } } {} is the peak emf. The period is T = 1 / f = / ω size 12{T=1/f=2π/ω} {} , where f size 12{f} {} is the frequency. Note that the script E stands for emf.

The fact that the peak emf, emf 0 = NAB ω size 12{"emf" rSub { size 8{0} } = ital "NAB"ω} {} , makes good sense. The greater the number of coils, the larger their area, and the stronger the field, the greater the output voltage. It is interesting that the faster the generator is spun (greater ω size 12{ω} {} ), the greater the emf. This is noticeable on bicycle generators—at least the cheaper varieties. One of the authors as a juvenile found it amusing to ride his bicycle fast enough to burn out his lights, until he had to ride home lightless one dark night.

[link] shows a scheme by which a generator can be made to produce pulsed DC. More elaborate arrangements of multiple coils and split rings can produce smoother DC, although electronic rather than mechanical means are usually used to make ripple-free DC.

The first part of the figure shows a schematic diagram of a single coil D C electric generator. It consists of a rotating rectangular loop placed between the two poles of a permanent magnet shown as two rectangular blocks curved on side facing the loop. The magnetic field B is shown pointing from the North to the South Pole. The two ends of this loop are connected to the two sides of a split ring. The two conducting carbon brushes are kept pressed separately on both sides of the split rings. The loop is rotated in the field with an angular velocity w. Outer ends of the two brushes are connected to an electric bulb which is shown to glow brightly. The second part of the figure shows the graph for e m f generated as a function of time. The e m f is along the Y axis and the time t is along the X axis. The graph is a progressive and rectified sine wave with a time period T. The sine wave has only positive pulses. The crest maxima are at E zero.
Split rings, called commutators, produce a pulsed DC emf output in this configuration.

Calculating the maximum emf of a generator

Calculate the maximum emf, emf 0 size 12{"emf" rSub { size 8{0} } } {} , of the generator that was the subject of [link] .

Strategy

Once ω size 12{ω} {} , the angular velocity, is determined, emf 0 = NAB ω size 12{"emf" rSub { size 8{0} } = ital "NAB"ω} {} can be used to find emf 0 size 12{"emf" rSub { size 8{0} } } {} . All other quantities are known.

Solution

Angular velocity is defined to be the change in angle per unit time:

ω = Δ θ Δ t . size 12{ω= { {Δθ} over {Δt} } } {}

One-fourth of a revolution is π/2 size 12{l} {} radians, and the time is 0.0150 s; thus,

ω = π / 2 rad 0.0150 s = 104 . 7 rad/s .

104.7 rad/s is exactly 1000 rpm. We substitute this value for ω size 12{ω} {} and the information from the previous example into emf 0 = NAB ω size 12{"emf" rSub { size 8{0} } = ital "NAB"ω} {} , yielding

emf 0 = NAB ω = 200 ( 7 . 85 × 10 3 m 2 ) ( 1 . 25 T ) ( 104 . 7 rad/s ) = 206 V . alignl { stack { size 12{"emf" rSub { size 8{0} } = ital "NAB"ω} {} #" "="200" \( 7 "." "85" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{2} } \) \( 1 "." "25"" T" \) \( "104" "." 7" rad/s" \) {} # " "="206"" V" {}} } {}

Discussion

The maximum emf is greater than the average emf of 131 V found in the previous example, as it should be.

Got questions? Get instant answers now!

In real life, electric generators look a lot different than the figures in this section, but the principles are the same. The source of mechanical energy that turns the coil can be falling water (hydropower), steam produced by the burning of fossil fuels, or the kinetic energy of wind. [link] shows a cutaway view of a steam turbine; steam moves over the blades connected to the shaft, which rotates the coil within the generator.

Photograph of a steam turbine connected to a generator.
Steam turbine/generator. The steam produced by burning coal impacts the turbine blades, turning the shaft which is connected to the generator. (credit: Nabonaco, Wikimedia Commons)

Generators illustrated in this section look very much like the motors illustrated previously. This is not coincidental. In fact, a motor becomes a generator when its shaft rotates. Certain early automobiles used their starter motor as a generator. In Back Emf , we shall further explore the action of a motor as a generator.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask