<< Chapter < Page Chapter >> Page >
An introduction to one of the basic elements of music.

When you have more than one pitch sounding at the same time in music, the result is harmony . Harmony is one of the basic elements of music, but it is not as basic as some other elements, such as rhythm and melody . You can have music that is just rhythms, with no pitches at all. You can also have music that is just a single melody, or just a melody with rhythm accompaniment .

But as soon as there is more than one pitch sounding at a time, you have harmony. Even if nobody is actually playing chords , or even if the notes are part of independent contrapuntal lines, you can hear the relationship of any notes that happen at the same time, and it is this relationship that makes the harmony.

Harmony does not have to be particularly "harmonious"; it may be quite dissonant , in fact. For the purpose of definitions, the important fact is the notes sounding at the same time.

Harmony is the most emphasized and most highly developed element in Western music , and can be the subject of an entire course on music theory. Many of the concepts underlying Western harmony are explained in greater detail elsewhere (see Triads and Beginning Harmonic Analysis , for example), but here are some basic terms and short definitions that you may find useful in discussions of harmony:

    Harmony textures

  • implied harmony - A melody all by itself ( Monophony ) can have an implied harmony, even if no other notes are sounding at the same time. In other words, the melody can be constructed so that it strongly suggests a harmony that could accompany it. For example, when you sing a melody by itself, you may be able to "hear" in your mind the chords that usually go with it. A Bach unaccompanied cello suite also has strongly implied harmonies; if someone really wanted to play an accompaniment , the appropriate chords could be found pretty easily. But some melodies don't imply any harmony; they are not meant to be played with harmony, and don't need it to be legitimate music. (Good examples of this include plainchant, some modern art music, and some Non-Western music, for example, Native American flute music.)
  • drones - The simplest way to add harmony to a melody is to play it with drones. A drone is a note that changes rarely or not at all. Drones can be most easily found in bagpipes music, Indian Classical music and other musics that use instruments that traditionally play drone notes. (See Harmony with Drones .)
  • parallel harmony - Parallel harmony occurs when different lines in the music go up or down together (usually following the melody). (See Parallel Harmonies for examples.)
  • homophony - Homophony is a texture of music in which there is one line that is obviously the melody. The rest of the notes are harmony and accompaniment . (See Homophonic .)
  • polyphony or counterpoint - Both of these terms refer to a texture of music in which there is more than one independent melodic line at the same time, and they are all fairly equal in importance. (See Polyphonic and Counterpoint .)

    Chords

  • chords - In Western music, most harmony is based on chords. Chords are groups of notes built on major or minor triads . In traditional triadic harmony, there are always at least three notes in a chord (there can be more than three), but some of the notes may be left out and only "implied" by the harmony. The notes of the chord may be played at the same time ( block chords ), or may be played separately with some overlap, or may be played separately but in a quick enough succession that they will be "heard" as a chord or understood to imply a chord ( arpeggiated chords or arpeggios ).
  • chord progression - A series of chords played one after another is a chord progression. Musicians may describe a specific chord progression (for example, "two measures of G major, then a half measure of A minor and a half measure of D seventh", or just "G, A minor, D seventh") or speak more generally of classes of chord progressions (for example a "blues chord progression"). Please see Beginning Harmonic Analysis for more information.

    Harmonic analysis

  • functional harmony - Harmony can simply be more than one note sounding at a time, providing texture and interest to a piece; drones are one example of this non-functional type of harmony. One of the most important features of common practice music, however, is functional harmony. This is harmony in which each chord functions in a specific way in the key , and underpins the form of the piece of music. For an introduction to functional harmony, see Beginning Harmonic Analysis
  • harmonic rhythm - The harmonic rhythm of a piece refers to how often the chords change. Music in which the chords change rarely has a slow harmonic rhythm; music in which the chords change often has a fast harmonic rhythm. Harmonic rhythm can be completely separate from other rhythms and tempos. For example, a section of music with many short, quick notes but only one chord has fast rhythms but a slow harmonic rhythm.
  • cadence - A cadence is a point where the music feels as if it has come to a temporary or permanent stopping point. In most Western music, cadence is tied very strongly to the harmony. For example, most listeners will feel that the strongest, most satisfying ending to a piece of music involves a dominant chord followed by a tonic chord . In fact, a song that does not end on the tonic chord will sound quite unsettled and even unfinished to most listeners. (See Cadence .)
  • diatonic - Diatonic harmony stays in a particular major or minor key.
  • chromatic - Chromatic harmony includes many notes and chords that are not in the key and so contains many accidentals .
  • dissonance - A dissonance is a note, chord, or interval that does not fit into the triadic harmonies that we have learned to expect from music. A dissonance may sound surprising, jarring, even unpleasant.

    Accompaniment

  • accompaniment - All the parts of the music that are not melody are part of the accompaniment. This includes rhythmic parts, harmonies, the bass line, and chords.
  • melodic line - This is just another term for the string of notes that make up the melody .
  • bass line - The bass line is the string of notes that are the lowest notes being sung or played. Because of basic laws of physics, the bass line sets up the harmonics that all the other parts - including the melody - must fit into. This makes it a very important line both for tuning and for the harmony. The bass line also often outlines the chord progression , and it is often the most noticeable line of the accompaniment.
  • inner parts or inner voices - Accompaniment parts that fill in the music in between the melody (which is often the highest part) and the bass line.
  • descant - The melody is not always the highest line in the music. Attention is naturally drawn to high notes, so a part that is higher than the melody is sometimes given a special name such as "descant". This term is an old one going all the way back to when harmonies first began to be added to medieval chant. (See Counterpoint for more about descants.)

Suggestions for activities that introduce young students to harmony may be found in Harmony with Drones , Simple Chordal Harmony , Parallel Harmonies , and Independent Harmonies .

Thanks to everyone who participated in the survey! It was very useful to me, both as a researcher and as an author, to get a better picture of my readers' goals and needs. I hope to begin updating the survey results module in April. I will also soon begin making some of the suggested additions, and emailed comments are still welcome as always.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Understanding basic music theory. OpenStax CNX. Jan 10, 2007 Download for free at http://cnx.org/content/col10363/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Understanding basic music theory' conversation and receive update notifications?

Ask