<< Chapter < Page Chapter >> Page >

Homogeneous equilibria

A homogeneous equilibrium is one in which all of the reactants and products are present in a single solution (by definition, a homogeneous mixture). In this chapter, we will concentrate on the two most common types of homogeneous equilibria: those occurring in liquid-phase solutions and those involving exclusively gaseous species. Reactions between solutes in liquid solutions belong to one type of homogeneous equilibria. The chemical species involved can be molecules, ions, or a mixture of both. Several examples are provided here.

C 2 H 2 ( a q ) + 2 Br 2 ( a q ) C 2 H 2 Br 4 ( a q ) K c = [ C 2 H 2 Br 4 ] [ C 2 H 2 ] [ Br 2 ] 2
I 2 ( a q ) + I ( a q ) I 3 ( a q ) K c = [ I 3 ] [ I 2 ] [ I ]
Hg 2 2+ ( a q ) + NO 3 ( a q ) + 3 H 3 O + ( a q ) 2 Hg 2+ ( a q ) + HNO 2 ( a q ) + 4 H 2 O ( l )
K c = [ Hg 2+ ] 2 [ HNO 2 ] [ Hg 2 2+ ] [ NO 3 ] [ H 3 O + ] 3
HF ( a q ) + H 2 O ( l ) H 3 O + ( a q ) + F ( a q ) K c = [ H 3 O + ] [ F ] [ HF ]
NH 3 ( a q ) + H 2 O ( l ) NH 4 + ( a q ) + OH ( a q ) K c = [ NH 4 + ] [ OH ] [ NH 3 ]

In each of these examples, the equilibrium system is an aqueous solution, as denoted by the aq annotations on the solute formulas. Since H 2 O( l ) is the solvent for these solutions, its concentration does not appear as a term in the K c expression, as discussed earlier, even though it may also appear as a reactant or product in the chemical equation.

Reactions in which all reactants and products are gases represent a second class of homogeneous equilibria. We use molar concentrations in the following examples, but we will see shortly that partial pressures of the gases may be used as well.

C 2 H 6 ( g ) C 2 H 4 ( g ) + H 2 ( g ) K c = [ C 2 H 4 ] [ H 2 ] [ C 2 H 6 ]
3 O 2 ( g ) 2 O 3 ( g ) K c = [ O 3 ] 2 [ O 2 ] 3
N 2 ( g ) + 3 H 2 ( g ) 2 NH 3 ( g ) K c = [ NH 3 ] 2 [ N 2 ] [ H 2 ] 3
C 3 H 8 ( g ) + 5 O 2 ( g ) 3 CO 2 ( g ) + 4 H 2 O ( g ) K c = [ CO 2 ] 3 [ H 2 O ] 4 [ C 3 H 8 ] [ O 2 ] 5

Note that the concentration of H 2 O( g ) has been included in the last example because water is not the solvent in this gas-phase reaction and its concentration (and activity) changes.

Whenever gases are involved in a reaction, the partial pressure of each gas can be used instead of its concentration in the equation for the reaction quotient because the partial pressure of a gas is directly proportional to its concentration at constant temperature. This relationship can be derived from the ideal gas equation, where M is the molar concentration of gas, n V .

P V = n R T
P = ( n V ) R T
= M R T

Thus, at constant temperature, the pressure of a gas is directly proportional to its concentration.

Using the partial pressures of the gases, we can write the reaction quotient for the system C 2 H 6 ( g ) C 2 H 4 ( g ) + H 2 ( g ) by following the same guidelines for deriving concentration-based expressions:

Q P = P C 2 H 4 P H 2 P C 2 H 6

In this equation we use Q P to indicate a reaction quotient written with partial pressures: P C 2 H 6 is the partial pressure of C 2 H 6 ; P H 2 , the partial pressure of H 2 ; and P C 2 H 6 , the partial pressure of C 2 H 4 . At equilibrium:

K P = Q P = P C 2 H 4 P H 2 P C 2 H 6

The subscript P in the symbol K P    designates an equilibrium constant derived using partial pressures instead of concentrations. The equilibrium constant, K P , is still a constant, but its numeric value may differ from the equilibrium constant found for the same reaction by using concentrations.

Conversion between a value for K c    , an equilibrium constant expressed in terms of concentrations, and a value for K P , an equilibrium constant expressed in terms of pressures, is straightforward (a K or Q without a subscript could be either concentration or pressure).

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask