<< Chapter < Page Chapter >> Page >
This figure includes electron configurations and orbital diagrams for four elements, N, O, F, and N e. Each diagram consists of two individual squares followed by 3 connected squares in a single row. The first square is labeled below as, “1 s.” The second is similarly labeled, “2 s.” The connected squares are labeled below as, “2 p.” All squares not connected to each other contain a pair of half arrows: one pointing up and the other down. For the element N, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 3. Each of the squares in the group of 3 contains a single upward pointing arrow for this element. For the element O, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 4. The first square in the group of 3 contains a pair of arrows and the last two squares contain single upward pointing arrows. For the element F, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 5. The first two squares in the group of 3 each contain a pair of arrows and the last square contains a single upward pointing arrow. For the element N e, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 6. The squares in the group of 3 each contains a pair of arrows.

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the lowest-energy subshell available, the 3 s orbital, giving a 1 s 2 2 s 2 2 p 6 3 s 1 configuration. The electrons occupying the outermost shell orbital(s) (highest value of n ) are called valence electrons    , and those occupying the inner shell orbitals are called core electrons ( [link] ). Since the core electron shells correspond to noble gas electron configurations, we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along with the valence electrons in a condensed format. For our sodium example, the symbol [Ne] represents core electrons, (1 s 2 2 s 2 2 p 6 ) and our abbreviated or condensed configuration is [Ne]3 s 1 .

This figure includes the element symbol N a, followed by the electron configuration for the element. The first part of the electron configuration, 1 s superscript 2 2 s superscript 2 2 p superscript 6, is shaded in purple and is labeled, “core electrons.” The last portion, 3 s superscript 1, is shaded orange and is labeled, “valence electron.” To the right of this configuration is the word “Abbreviation” followed by [ N e ] 3 s superscript 1.
A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol whose configuration matches the core electron configuration of the other element.

Similarly, the abbreviated configuration of lithium can be represented as [He]2 s 1 , where [He] represents the configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

Li: [ He ] 2 s 1 Na: [ Ne ] 3 s 1

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3 s 2 configuration, is analogous to its family member beryllium, [He]2 s 2 . Both atoms have a filled s subshell outside their filled inner shells. Aluminum (atomic number 13), with 13 electrons and the electron configuration [Ne]3 s 2 3 p 1 , is analogous to its family member boron, [He]2 s 2 2 p 1 .

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal quantum number of the outer shell of the heavier elements has increased by one to n = 3. [link] shows the lowest energy, or ground-state, electron configuration for these elements as well as that for atoms of each of the known elements.

A periodic table, entitled, “Electron Configuration Table” is shown. The table includes the outer electron configuration information, atomic numbers, and element symbols for all elements. A square for the element hydrogen is pulled out beneath the table to provide detail. The blue shaded square includes the atomic number in the upper left corner, which is 1, the element symbol, H in the upper right corner, and the outer electron configuration in the lower, central portion of the square. For H, this is 1 s superscript 1.
This version of the periodic table shows the outer-shell electron configuration of each element. Note that down each group, the configuration is often similar.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might expect that we would begin to add electrons to the 3 d subshell. However, all available chemical and physical evidence indicates that potassium is like lithium and sodium, and that the next electron is not added to the 3 d level but is, instead, added to the 4 s level ( [link] ). As discussed previously, the 3 d orbital with no radial nodes is higher in energy because it is less penetrating and more shielded from the nucleus than the 4 s , which has three radial nodes. Thus, potassium has an electron configuration of [Ar]4 s 1 . Hence, potassium corresponds to Li and Na in its valence shell configuration. The next electron is added to complete the 4 s subshell and calcium has an electron configuration of [Ar]4 s 2 . This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

Questions & Answers

what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
what is chemistry
Imoh Reply
what is chemistry
Damilola
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask