<< Chapter < Page Chapter >> Page >

pH = −log(0.100) = 1.000

(b) X = 12.50 mL

[ H 3 O + ] = n ( H + ) V = 0.002500 mol × ( 1000 mL 1 L ) 0.100 M × 12.50 mL 25.00 mL + 12.50 mL = 0.0333 M

pH = −log(0.0333) = 1.477

(c) X = 25.00 mL

Since the volumes and concentrations of the acid and base solutions are the same: n ( H + ) 0 = n ( OH ) 0 , and pH = 7.000, as described earlier.

(d) X = 37.50 mL

In this case:

n ( OH ) 0 > n ( H + ) 0
[ OH ] = n ( OH ) V = 0.100 M × 35.70 mL 0.002500 mol × ( 1000 mL 1 L ) 25.00 mL + 37.50 mL = 0.0200 M

pH = 14 − pOH = 14 + log([OH ]) = 14 + log(0.0200) = 12.30

Check your learning

Calculate the pH for the strong acid/strong base titration between 50.0 mL of 0.100 M HNO 3 ( aq ) and 0.200 M NaOH (titrant) at the listed volumes of added base: 0.00 mL, 15.0 mL, 25.0 mL, and 40.0 mL.

Answer:

0.00: 1.000; 15.0: 1.5111; 25.0: 7; 40.0: 12.523

In the example, we calculated pH at four points during a titration. [link] shows a detailed sequence of changes in the pH of a strong acid and a weak acid in a titration with NaOH.

pH Values in the Titrations of a Strong Acid with a Strong Base and of a Weak Acid with a Strong Base
Volume of 0.100 M NaOH Added (mL) Moles of NaOH Added pH Values 0.100 M HCl Titration of 25.00 mL of 0.100 M HCl (0.00250 mol of HCI) with 0.100 M NaOH. pH Values 0.100 M CH 3 CO 2 H Titration of 25.00 mL of 0.100 M CH 3 CO 2 H (0.00250 mol of CH 3 CO 2 H) with 0.100 M NaOH.
0.0 0.0 1.00 2.87
5.0 0.00050 1.18 4.14
10.0 0.00100 1.37 4.57
15.0 0.00150 1.60 4.92
20.0 0.00200 1.95 5.35
22.0 0.00220 2.20 5.61
24.0 0.00240 2.69 6.13
24.5 0.00245 3.00 6.44
24.9 0.00249 3.70 7.14
25.0 0.00250 7.00 8.72
25.1 0.00251 10.30 10.30
25.5 0.00255 11.00 11.00
26.0 0.00260 11.29 11.29
28.0 0.00280 11.75 11.75
30.0 0.00300 11.96 11.96
35.0 0.00350 12.22 12.22
40.0 0.00400 12.36 12.36
45.0 0.00450 12.46 12.46
50.0 0.00500 12.52 12.52

The simplest acid-base reactions are those of a strong acid with a strong base. [link] shows data for the titration of a 25.0-mL sample of 0.100 M hydrochloric acid with 0.100 M sodium hydroxide. The values of the pH measured after successive additions of small amounts of NaOH are listed in the first column of this table, and are graphed in [link] , in a form that is called a titration curve    . The pH increases slowly at first, increases rapidly in the middle portion of the curve, and then increases slowly again. The point of inflection (located at the midpoint of the vertical part of the curve) is the equivalence point for the titration. It indicates when equivalent quantities of acid and base are present. For the titration of a strong acid with a strong base, the equivalence point occurs at a pH of 7.00 and the points on the titration curve can be calculated using solution stoichiometry ( [link] and [link] ).

Two graphs are shown. The first graph on the left is titled “Titration of Weak Acid.” The horizontal axis is labeled “Volume of 0.100 M N a O H added (m L).” Markings and vertical gridlines are provided every 5 units from 0 to 50. The vertical axis is labeled “p H” and is marked every 1 unis beginning at 0 extending to 14. A red curve is drawn on the graph which increases steadily from the point (0, 3) up to about (20, 5.5) after which the graph has a vertical section from (25, 7) up to (25, 11). The graph then levels off to a value of about 12.5 from about 40 m L up to 50 m L. The midpoint of the vertical segment of the curve is labeled “Equivalence point p H, 8.72.” The second graph on the right is titled “Titration of Strong Acid.” The horizontal axis is labeled “Volume of 0.100 M N a O H added (m L).” Markings and vertical gridlines are provided every 5 units from 0 to 50. The vertical axis is labeled “p H” and is marked every 1 units beginning at 0 extending to 14. A red curve is drawn on the graph which increases gradually from the point (0, 1) up to about (22.5, 2.2) after which the graph has a vertical section from (25, 4) up to nearly (25, 11). The graph then levels off to a value of about 12.4 from about 40 m L up to 50 m L. The midpoint of the vertical segment of the curve is labeled “Equivalence point p H, 7.00.”
(a) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 7.00 pH. (b) The titration curve for the titration of 25.00 mL of 0.100 M HCl (strong acid) with 0.100 M NaOH (strong base) has an equivalence point of 8.72 pH.

The titration of a weak acid with a strong base (or of a weak base with a strong acid) is somewhat more complicated than that just discussed, but it follows the same general principles. Let us consider the titration of 25.0 mL of 0.100 M acetic acid (a weak acid) with 0.100 M sodium hydroxide and compare the titration curve with that of the strong acid. [link] gives the pH values during the titration, [link] shows the titration curve.

Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask